
Attila Polacsek
Senior Android Developer | Supercharge

Csaba Kozák
Android Tech Lead | Supercharge

Fejlessz biztonságos alkalmazást
programozási minták fejlesztőknek



Security techniques
API protection



API protection - Simple app id key

3

■ Sent in every request

■ URL-s are often logged

■ Never put your key in the url

■ Authorization: key some-client-id

■ Vulnerable to MITM attacks

■ Unique per app, hard to replace



Security techniques
Secure the communication channel



Secure communication - HTTP vs HTTPS

5

■ HTTP

■ Plain text

■ Easy to obtain and view the data by third party

■ HTTPS

■ Stands for HTTP Secure

■ Used with SSL / TLS

■ TCP socket channel is encrypted



Secure communication - HTTPS

6

■ SSL

■ Secure Socket Layer

■ SSLv3.0 21 years old

■ v2.0 was prohibited in 2011 by RFC 6176 and v3.0 followed in 2015

■ TLS

■ Transport Layer Security

■ Successor of SSL, basically TLSv1.0 is SSLv3.1

■ Use the latest version to maximize security

■ TLSv1.0 supported since Android 1 and iPhone OS 1

■ TLSv1.1, TLSv1.2 supported since Android 5 Lollipop and iOS 5



Secure communication - OkHttp

7

■ Powers HttpUrlConnection since Android 4.4

■ Use MODERN_TLS connection spec (it’s the default)

■ It has a COMPATIBLE_TLS fallback

■ SSLv3.0 is not supported since OkHttp 2.2

https://twitter.com/jakewharton/status/482563299511250944



// create a custom connection spec (TlsVersion.TLS_1_2 requires Android 5+)

ConnectionSpec spec = new ConnectionSpec.Builder(ConnectionSpec.MODERN_TLS)
       .tlsVersions(TlsVersion.TLS_1_2)
       .cipherSuites(
               CipherSuite.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
               CipherSuite.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
               CipherSuite.TLS_DHE_RSA_WITH_AES_128_GCM_SHA256)
       .build();

OkHttpClient client = new OkHttpClient.Builder()
       .connectionSpecs(Collections.singletonList(spec))
       .build();



Secure communication - MITM

9

■ Technique to read HTTP or plain socket communication

■ Attacker can view, redirect or repeat the requests and responses

■ 4 common ways to intercept network traffic

■ Fake WiFi or cell tower

■ ARP (Address Resolution Protocol) spoofing

■ Hostile proxies / SSL bump

■ Malicious VPN

■ Burp suite, mitmproxy



Secure communication - mitmproxy

10

■ We will use mitmproxy in transparent

■ Transparent mode: monitors traffic at network level

■ Not all apps can use global proxy settings on Android

■ How

■ Enable TCP forwarding on the host machine

■ Route web ports through 8080 which is our default port

■ Start up mitmproxy in web mode: sudo mitmweb -T --host



Demo
mitmproxy



Demo
mitmproxy



Demo
mitmproxy



Secure communication - CERT Pinning

14

■ Leaf certificate

■ Intermediate certificate

■ Root certificate



CertificatePinner certPinner = new CertificatePinner.Builder()
       .add("api.github.com", "sha256/VRtYBz1boKOXjChfZYssN1AeNZCjywl77l2RTl/v380=")
       .build();

OkHttpClient client = new OkHttpClient.Builder()
       .certificatePinner(certPinner)
       .build();



Demo
mitmproxy



Security techniques
API protection



API protection - Prevent API call tampering

18

■ Shard API key to an ID and a shared secret

■ App ID is in every request

■ Sign request with the shared secret

■ Compute a message authentication code (MAC) with eg. HMAC 
SHA-256 algorithm

■ Send MAC in every request

■ Authorization: HMAC-SHA256 my-api-id my-hmac



API protection - Prevent API call tampering

19

■ Secrets are static constants

■ Use code obfuscator to make it harder to locate and extract

■ Encode it with some computationally simple way

■ Distribute it around the binary

■ Reassemble if needed

■ Never save it in persistent storage



// Somewhere in the code
byte[] encodedSecret = {'S', 'e', 'c', 'r', 'e', 't'};

// Somewhere else in the code
byte[] decodingKey = {'K', 'e', 'y'};

// Just before using the secret
byte[] clearSecret = decode(encodedSecret, decodingKey)

// Use the secret key to generate the signature for the API request
String signature = HMAC(clearSecret, message);



API protection - Handle User credentials

21

■ Client sends credentials

■ Server validates and sends back a session key

■ If session last longer than the app instance, persist it

■ Keychain Services on iOS

■ SharedPreferences on Android



API protection - Handle User credentials

22

■ Resource owner (aka the User)

■ Resource server (aka the API server)

■ Client

■ Authorization server

■ Grant types

■ Client credentials

■ Authorization code

■ Refresh token



API protection - Switch to Authorization Token

23

■ Return access token instead of a session key

■ They look similar and used the same way, but the content differ

■ Access token is represented as JSON Web Token (JWT)

■ Common claims

■ "iss" - identifies who issued the token

■ "sub" - the principal subject of the claims, often the User

■ "aud" - the intended audience for the claims, often the Server

■ "exp" - the expiration timestamp of the claims

■ Also called bearer token and passed with every API call



API protection - Shorten token lifetimes

24

■ Customizable expiration time

■ Can be replaced with refresh token



API protection - Authenticate the App, not just the User

25

■ Authorization is split into two steps

■ Resource owner authorization

■ Authorization code is returned

■ Client authorization

■ Authorization code and client secret are exchanged for tokens



API protection - Remove the Client Secret

26

■ Client secret is statically stored, like the app key was

■ We can remove it just like we removed the signing secret

■ Client authorization step

■ Send a request with the app’s unique characteristics

■ Receive the client secret from the server in the response



API protection - SLA

27

■ Multi factor authentication

■ Receive an SMS or use an RSA type token

■ Authorization step

■ Send credentials and receive authorization code

■ Ask for the second, one time pass

■ Send a request with the code, the OTP and the client secret

■ Receive the token



API protection - Token storage

28

■ AccountManager service

■ Encrypted SharedPreferences



API protection - Encrypted token

29

■ Encrypt with

■ Users PIN (with PBKDF2)

■ Android Keystore entry (from API 18)

■ Users fingerprint (from API 21)

■ Use only the official SDK provided by the Android Framework

■ Others eg. Samsung Pass are not secure



API protection - Encrypted storage

30

■ Realm

■ 64 byte key with AES-256 encryption

■ Encryption key must be provided by us

■ SqlCipher

■ 64 byte key with AES-256 encryption

■ Key is derived from a passphrase provided by us



// key is a 64 item long byte array
RealmConfiguration realmConfiguration = new RealmConfiguration.Builder()
       .encryptionKey(key)
       .build();

Realm realm = Realm.getInstance(realmConfiguration);

FlowManager.init(new FlowConfig.Builder(this)
       .addDatabaseConfig(new DatabaseConfig.Builder(ExampleDatabase.class)
               .openHelper((databaseDefinition, helperListener) ->
                       new SQLCipherOpenHelper(databaseDefinition, helperListener) {
                           @Override
                           protected String getCipherSecret() {
                               return "passphrase";
                           }
                       })
               .build())
       .build());



Security techniques
Storage



Storage - Intro

33

■ Most secure is to not store anything :)

■ Most apps need to store data

■ Multiple ways to store data on Android



Storage - Internal vs. external

34

■ The naming is rather confusing
■ Does not mean device storage vs. SD card

■ Internal storage: only the owner application can access it
■ External storage: all apps can access itt

■ Internal storage can be on the SD card
■ External storage can be on the device storage



Storage - Sandbox

35

■ Android apps run in a sandbox
■ Does not access data / services outside its sandbox
■ To do so, it must require permissions from the user
■ This means other apps cannot access our app’s data
■ Unix file permission to enforce this



Storage - Sandbox cont’d

36

■ Each app has its own unix user group
■ The group is created during app installation

# cat /data/system/packages.list | grep supercharge
io.supercharge.securityworkshop 10085 1 
/data/user/0/io.supercharge.securityworkshop default:targetSdkVersion=26 3003

# ls -lha | grep grep supercharge
drwx------   5 u0_a85 u0_a85 4.0K io.supercharge.securityworkshop



Storage - Internal storage

37

■ The path is something like this:
/data/data/io.supercharge.securityworkshop/files

■ To retrieve: context.getFilesDir()
■ Only the application can access these files
■ Even the user does not access these
■ Uninstalling the app deletes it



Storage - Internal storage cont’d

38

■ Debug mode allows accessing it
$ run-as io.supercharge.securityworkshop cat 
/data/data/io.supercharge.securityworkshop/files/hello
Hello world

■ But this is not possible in release apps:
$ run-as io.supercharge.securityworkshop cat 
/data/data/io.supercharge.securityworkshop/files/hello
run-as: package not debuggable: 
io.supercharge.securityworkshop

■ Never publish debuggable app!



Storage - External storage (private)

39

■ External storage is not always accessible
■ Environment.getExternalStorageState()
■ Path is something like this:

/storage/emulated/0/Android/data/io.supercharge.security
workshop/files

■ To retrieve it: context.getExternalFilesDir(null)
■ These file should be private to the application
■ Deleted during app uninstallation
■ No security restriction
■ Do not store sensitive data here!



Storage - External storage (public)

40

■ Path is something like this:
/storage/emulated/0/Download

■ To retrieve it: 
Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS)

■ Shared files
■ Stays after app uninstallation
■ These files could be from anyone
■ We should perform input validation
■ Verify loading dynamic libraries



Storage - SharedPreferences

41

■ To store key-value pairs
■ You should only store simple data
■ The was a world readable option before
■ Now it is deprecated, use Context.MODE_PRIVATE



Storage - SharedPreferences cont’d

42

■ Path is something like this:
/data/data/io.supercharge.securityworkshop/shared_prefs

■ It is under internal storage
■ But these are plain text files!

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
   <string name="key">sensitive</string>
</map>

■ There are encrypted alternatives
■ Only effective, if uses external password



Storage - File system encryption

43

■ From Android 5.0, the system encrypts the files by default
■ Full Disk Encryption (FDE)
■ Prompts for password before boot

■ New technique since 7.0
■ File-based Encryption (FBE)
■ Direct Boot
■ Credential Encrypted Storage - available after first password
■ Device Encrypted Storage

■ useful for example for phone, alarm, etc.



Storage - File system encryption cont’d

44

■ Only available if users set passcode
■ Encryption keys are claimed during first passcode prompt
■ Stays in the RAM until reboot
■ Lock screen does not evict the encryption keys
■ You have to implement it manually using KeyStore



Coffee break
See you in 15 minutes



Security techniques
Binary protection



Binary protection - intro

47

■ Our APK can be retrieved by third party
■ Google Play does not provide the APK
■ But there are several ways to get it
■ Google Play crawling
■ apkmirror.com , apkpure.com
■ Some countries does not even have Google Play



Binary protection - intro cont’d

48

■ We should know how the APKs are built, to protect them
■ Android app binaries are APK files
■ Actually these are simple zip files
■ Anybody can explode them



Binary protection - AndroidManifest.xml

49

■ Contains app meta-data
■ App package name
■ Activity, Services, ContentProviders
■ Permissions
■ Is the app debuggable?

$ aapt dump xmltree my-app.apk  AndroidManifest.xml
$ aapt dump badging my-app.apk



Binary protection - res

50

■ res folder
■ All Android resource files
■ JPG, PNG files
■ XML resources - in binary form
■ XML drawables
■ Layout files



Binary protection - resources.arsc

51

■ Basically a big table
■ Value resources are being put here
■ Color
■ Dimen
■ ID
■ Integer
■ String



Binary protection - classes.dex

52

■ The actual source code can be found here
■ Dalvik bytecode format
■ Program code and Java all libraries
■ Multi-dex -> classesN.dex



Binary protection - APK signature

53

■ Identifies the developer
■ APK integrity
■ JAR signing v1 scheme
■ APK Signature Scheme v2 (v2 scheme)
■ Since Android 7.0
■ Backwards compatibility



Binary protection - analyzing APK

54

■ Android Studio
■ Build →  Analyze APK



Demo
Android Studio APK analyzer



Binary protection - jadx

56

■ https://github.com/skylot/jadx
■ GUI tool
■ Decompiles bytecode to human-readable Java code
■ Also decompiles resources



Demo
jadx



Binary protection - apktool

58

■ https://github.com/iBotPeaches/Apktool
■ APK reverse engineering tool
■ Disassembly APK
■ Decompiles Dalvik bytecode to Smali code

$ java -jar apktool_2.3.0.jar d workshop.apk



Demo
apktool



Binary protection - rebuilding APK

60

■ $ java -jar apktool_2.3.0.jar b workshop

■ $ adb install workshop.apk
Failure [INSTALL_PARSE_FAILED_NO_CERTIFICATES]

■ APK must be signed
■ JAR signing v1 scheme

$ jarsigner -sigalg SHA1withRSA -digestalg SHA1
-keystore release.keystore workshop.apk alias_name

■ APK Signature Scheme v2
$ apksigner sign --ks release.keystore --out 
workshop-signed.apk workshop.apk



Demo
rebuilding APK



Binary protection - obfuscation

62

■ As we can see, source code can be easily reverse-engineered
■ And also easily modified
■ We could make this harder, by introducing obfuscation tools
■ Multiple options on Android



Binary protection - ProGuard

63

■ Default code obfuscation tool
■ Comes with the Android Gradle Plugin
■ Must be configured
■ Also contains optimizer and byte code preverifier
■ Does not touch resources
■ Mapping should be retained to retrace later



Binary protection - ProGuard configuration

64

■ Configuration in proguard.cfg
■ Libraries: consumerProguardFiles
■ Developers really hate this tool
■ Reflectively accessed code must be kept
■ We should keep the smallest numbers of classes



Binary protection - ProGuard directives

65

■ -keep
■ -keepclassmembers
■ -keepnames
■ -keepclassmembernames
■ -keepclasseswithmembers
■ -keepclasseswithmembernames



Demo
disassembly obfuscated code



Binary protection - APK integrity checks

67

■ Check if APK debuggable
boolean debuggable = 0 != (getApplicationInfo().flags & 
ApplicationInfo.FLAG_DEBUGGABLE);

■ Check APK signatures

PackageManager pm = getPackageManager();
PackageInfo info = pm.getPackageInfo(getPackageName(), 
PackageManager.GET_SIGNATURES);

for (Signature sig : info.signatures) {
   if (!sha256(sig.toByteArray()).equals(SIGNATURE) {
       // stop the app
   }
}



Binary protection - Other tools

68

■ https://www.guardsquare.com/en/dexguard
■ https://dexprotector.com/

■ Not free - rather expensive
■ Control flow obfuscation
■ Class, resource encryption
■ Runtime self-protection

https://www.guardsquare.com/en/dexguard
https://dexprotector.com/


Security techniques
Root protection



Root protection - Rooting intro

70

■ The Android operation system provides lots of security features
■ Rooting enables the user to run as root user
■ These of security features will not be available
■ For example: internal storage is not private to the app anymore
■ We can try to check whether the user is running on an unprotected 

environment



Root protection - Root checks

71

■ There are simple libraries to indicate root
■ https://github.com/scottyab/rootbeer

■ Availability of cloaking apps
■ Availability of apps with root access
■ Availability of busybox
■ Availability of su

■ However, these checks can be easily defeated.

https://github.com/scottyab/rootbeer


Root protection - SafetyNet

72

■ Google’s attestation API
■ Comes with Google Play Services
■ Cannot work on non-Google Play devices
■ Updated automatically
■ Free, but has quota



Root protection - SafetyNet internals

73

■ snet service collects the data
■ Sends back to Google
■ snet is not in any APK
■ Updated regularly
■ It has lots of checks



Root protection - Using SafetyNet

74

1. The app requests a nonce from the trusted server
2. The app calls the SafetyNet
3. SafetyNet returns the result in JWS
4. The app should send this to the trusted server for verification
5. The server returns the final result
6. The app can resume its services



Root protection - SafetyNet results

75

■ ctsProfileMatch:
■ Certified, genuine device that passes CTS

■ basicIntegrity: 
■ Certified device with unlocked bootloader
■ Genuine but uncertified device, such as when the manufacturer doesn't 

apply for certification
■ Device with custom ROM

■ No basicIntegrity:
■ Emulator
■ Protocol emulator script
■ Signs of system integrity compromise, such as rooting
■ Signs of other active attacks, such as API hooking



Root protection - SafetyNet caveats

76

■ Use the latest library
■ Generate the nonce on server side
■ Create big nonce, using secure random number generator
■ Verify the results on the server, not in the app
■ Do not use the test attestation verification service for production
■ Check nonce, timestamp, APK name, and hashes



Demo
SafetyNet



Security techniques
Sensitive data in memory



Sensitive data in memory - intro

79

■ Sensitive data should be in the memory in the smallest window
■ Generally, passwords are used as String objects
■ But Strings are immutable
■ We cannot remove them from the memory
■ Therefore we should use a mutable data structure with more control



Sensitive data in memory - EditText

80

int length = passwordView.length();
char[] password = new char[length];
passwordView.getText().getChars(0, length, pd, 0);

// use password

Arrays.fill(password, ' ');



QA



Thanks for your attention!

Contact us!

Attila Polacsek
Senior Android Developer | Supercharge

Csaba Kozák
Android Tech Lead | Supercharge




